science | debat (danish)
John Fredsted
Rømøvænget 32B
8381 Tilst
Denmark

Publications in Journals

Obtaining consistent Lorentz gauging for a gravitationally coupled fermion
AbstractFor internal gauge forces, the result of locally gauging, i.e., of performing the substitution $\partial \rightarrow D$, is physically the same whether performed on the action or on the corresponding Euler-Lagrange equations of motion. Rather unsettling, though, such commutativity fails for the standard way of coupling a Dirac fermion to the gravitational field in the setting of a local Lorentz gauge theory of general relativity in the vierbein formalism, the equivalence principle thus seemingly being here violated. This paper will present a formalism in which commutativity holds for the gravitational force as well, the action for the gravitational field itself being still the Einstein-Hilbert one. Notably, in this formalism, the spinor field will carry a world/coordinate index, rather than a Lorentz spinor index as it does standardly. More generally, no Lorentz indices will figure, neither vector indices nor spinor indices, which from a parsimonious point of view seems quite satisfactory.
 
Published inJ. Math. Phys. 60, 102503 (2019)
 
Freely available atarxiv.org/abs/1906.12200

Spinor fields without Lorentz frames in curved space-time using complexified quaternions
AbstractUsing complexified quaternions, a formalism without Lorentz frames, and therefore also without vierbeins, for dealing with tensor and spinor fields in curved space-time is presented. A local U(1) gauge symmetry, which, it is speculated, might be related to electromagnetism, emerges naturally.
 
Published inJ. Math. Phys. 50, 083507 (2009)
 
Freely available atarxiv.org/abs/0811.1357

Exponentiation of the spinor representation of the Lorentz group
AbstractAn exact finite expression for the exponentiation of the (spin 1/2) spinor representation of the Lorentz group is obtained. From this expression an exact finite expression for the exponentiation of the vector representation of the Lorentz group is derived. The two expressions are compared with the literature in the special cases of either spatial rotations or boosts, only.
 
Published inJ. Math. Phys. 42, 4497 (2001)

Comment on “Wilson loops in four-dimensional quantum gravity”
AbstractAs an example of a classical holonomy Modanese [Phys. Rev. D 49, 6534 (1994)] considered a class of circular curves in Schwarzschild geometry. The result obtained does not, as it should, vanish in the limit M=0. This Comment corrects this error.
 
Published inPhys. Rev. D 64, 088501 (2001)



Publications at arXiv.org

Obtaining consistent Lorentz gauging for a gravitationally coupled fermion
AbstractFor internal gauge forces, the result of locally gauging, i.e., of performing the substitution $\partial \rightarrow D$, is physically the same whether performed on the action or on the corresponding Euler-Lagrange equations of motion. Rather unsettling, though, such commutativity fails for the standard way of coupling a Dirac fermion to the gravitational field in the setting of a local Lorentz gauge theory of general relativity in the vierbein formalism, the equivalence principle thus seemingly being here violated. This paper will present a formalism in which commutativity holds for the gravitational force as well, the action for the gravitational field itself being still the Einstein-Hilbert one. Notably, in this formalism, the spinor field will carry a world/coordinate index, rather than a Lorentz spinor index as it does standardly. More generally, no Lorentz indices will figure, neither vector indices nor spinor indices, which from a parsimonious point of view seems quite satisfactory.
 
Freely available atarxiv.org/abs/1906.12200

Spinors and gravity without Lorentz indices
AbstractCoupling spinor fields to the gravitational field, in the setting of general relativity, is standardly done via the introduction of a vierbein field and the (associated minimal) spin connection field. This makes three types of indices feature in the formalism: world/coordinate indices, Lorentz vector indices, and Lorentz spinor indices, respectively. This article will show, though, that it is possible to dispense altogther with the Lorentz indices, both tensorial ones and spinorial ones, obtaining a formalism featuring only world indices. This will be possible by having both the 'Dirac operator' and the generators of 'Lorentz' transformations become spacetime-dependent, although covariantly constant. The formalism is developed in the setting of complexified quaternions.
 
Freely available atarxiv.org/abs/1811.00377

Spinor fields without Lorentz frames in curved space-time using complexified quaternions
AbstractUsing complexified quaternions, a formalism without Lorentz frames, and therefore also without vierbeins, for dealing with tensor and spinor fields in curved space-time is presented. A local U(1) gauge symmetry, which, it is speculated, might be related to electromagnetism, emerges naturally.
 
Freely available atarxiv.org/abs/0811.1357

Natural octonionic generalization of general relativity
AbstractAn intriguingly natural generalization, using complex octonions, of general relativity is pointed out. The starting point is the vierbein-based double dual formulation of the Einstein-Hilbert action. In terms of two natural structures on the (complex) quaternions and (complex) octonions, the inner product and the cross products, respectively, this action is linked with the complex quaternionic structure constants, and subsequently generalized to an achtbein-based 'double chi-dual' action in terms of the complex octonionic structure constants.
 
Freely available atarxiv.org/abs/0707.0554